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Abstract

A new diffraction method has been developed in which
the intensity of Bragg re¯ections is measured while
changing continually the wavelength of the radiation
over a range in the vicinity of the absorption edge of an
atom contained in the crystal. It is shown that the
intensity gradient with respect to the wavelength of the
hkl re¯ection is in a simple relation to the real and
imaginary parts of the structure factor of that re¯ection
and, if the positions of the anomalously scattering atoms
are known or properly assumed, the phase of F(hkl) can
be derived by solving simultaneous linear equations. The
procedure is particularly simple when the crystal is
centrosymmetric. The method, called the wavelength-
modulated diffraction (WMD) method, is free from the
problem of intensity scaling encountered in other
methods of phase determination. Synchrotron radiation
is most suited to WMD measurements. Suggestions on
how to measure the intensity gradient are given and the
possible errors involved are discussed.

1. Introduction

Determination of the phase (or sign) of the structure
factor is a long-standing problem in crystal structure
analysis; a number of approaches to its solution have
been developed in the past six decades. In recent years,
synchrotron radiation has become available for X-ray
crystallography; the wavelength tunability combined
with the high brightness of such synchrotron sources
provide powerful means to overcome the problem.
Methods have been developed in which the anomalous-
scattering phenomenon has been fully utilized. The
multiwavelength anomalous diffraction (MAD) method
is one such method that has been successfully applied to
macromolecular structure determination (Karle, 1989;
Hendrickson, 1991). The fundamental procedure
involved in this method is the collection of diffraction
intensity data using the radiation of several wavelengths
around the absorption edge of an atom contained in a
crystal and it is necessary to ensure that the intensity
data be obtained exactly on the same scale.

In the present paper, a new method is proposed in
which diffraction measurements are made while chan-
ging continually the wavelength of the radiation in the
vicinity of the absorption edge. What is measured is not
an integrated intensity of Bragg re¯ections but an
intensity gradient with respect to the wavelength (or a
wavelength pro®le), which provides information on the
phase (or sign) of the structure factor. In this method,
called the wavelength-modulated diffraction (WMD)
method, only `one measurement' of the intensity
gradient suf®ces to determine the phase (or sign) and it
is therefore free from the problem of intensity scaling.

In the following, a theory of WMD is presented,
followed by a suggestion on how to measure the inten-
sity gradient for many Bragg re¯ections and a discussion
on the possible errors involved.

2. Theory

The crystal structure factor is expressed as

F�hkl� �P
j

fj exp 2�i�hxj � kyj � lzj�; �1�

where fj is the atomic scattering factor of the jth atom
and xj, yj and zj are the fractional coordinates of that
atom. Intensity of the hkl re¯ection is given by the
product of F(hkl) and its complex conjugate F(hkl)� as

I�hkl� � F�hkl�F�hkl��: �2�
Suppose that the wavelength � of the radiation to be

used for diffraction measurements lies near the
absorption edge of an atom contained in a crystal and
denote that atom by the symbol H. The atomic scat-
tering factor of this atom is expressed as

fH � f 0
H � f 0H � if 00H : �3�

It is well known that f 0H changes abruptly to a deep
minimum on approaching from both the long- and the
short-wavelength sides to the absorption edge, while f 00H

shows a rather gradual variation with �, except for a
sharp discontinuity at the edge. It is convenient to divide
the terms in (1) into those including the contribution
from atom H and those including the contribution from
the other kinds of atoms, which are denoted by the
symbol J:
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F�hkl� � fH

P
H

exp 2�i�hxH � kyH � lzH�

�P
J

fJ exp 2�i�hxJ � kyJ � lzJ�: �4�

We assume that the absorption edge of atom H is far
from those of the other kinds of atoms and therefore it is
not necessary to take f 0J and f 00J into account. Rewriting
(4), we obtain

F�hkl� � A�hkl� � iB�hkl� �5�
with

A�hkl� � �f 0
H � f 0H�

�P
H

cos#H

�
ÿ f 00H

�P
H

sin#H

�
�P

J

f 0
J cos#J �6�

and

B�hkl� � �f 0
H � f 0H�

�P
H

sin#H

�
� f 00H

�P
H

cos#H

�
�P

J

f 0
J sin#J; �7�

where
P

H cos#H and
P

H sin#H represent the sumsP
H

cos 2��hxH � kyH � lzH�

and P
H

sin 2��hxH � kyH � lzH�;

respectively.
P

J f 0
J cos#J representsP

J

f 0
J cos 2��hxJ � kyJ � lzJ�;

the meaning of
P

J f 0
J sin#J follows logically.

Next, suppose that diffraction measurements are
made while changing continually � in the small range
�� in the vicinity of the absorption edge of the atom H.
It is those parts of I(hkl) that contain f 0H and f 00H which
show an appreciable variation with �. We differentiate
I(hkl) with respect to � in the middle of the range:

@I�hkl�=@� � @A2�hkl�=@�� @B2�hkl�=@� �8�
with

@A2�hkl�=@�
� 2�f 0

H � f 0H��@f 0H=@��
�P

H

cos#H

�2

� 2f 00H �@f 00H=@��
�P

H

sin#H

�2

ÿ
n

2
�
f 00H �@f 0H=@�� � �f 0

H � f 0H��@f 00H=@��
�

�
�P

H

cos#H

��P
H

sin#H

�o
� 2

h
�@f 0H=@��

�P
H

cos#H

�
ÿ �@f 00H=@��

�P
H

sin#H

�i�P
J

f 0
J cos#J

�
�9�

and

@B2�hkl�=@�
� 2�f 0

H � f 0H��@f 0H=@��
�P

H

sin#H

�2

� 2f 00H �@f 00H=@��
�P

H

cos#H

�2

�
n

2
�
f 00H �@f 0H=@�� � �f 0

H � f 0H��@f 00H=@��
�

�
�P

H

sin#H

��P
H

cos#H

�o
� 2

h
�@f 0H=@��

�P
H

sin#H

�
� �@f 00H=@��

�P
H

cos#H

�i�P
J

f 0
J sin#J

�
: �10�

Rearranging terms in (9) and (10), (8) may be written in
the form

@I�hkl�=@� � 2
h
�@f 0H=@��

�P
H

cos#H

�
ÿ �@f 00H=@��

�P
H

sin#H

�i
A�hkl�

� 2
h
�@f 0H=@��

�P
H

sin#H

�
� �@f 00H=@��

�P
H

cos#H

�i
B�hkl�: �11�

Now consider two cases, one in which the crystal is
centrosymmetric and the other in which it is noncen-
trosymmetric. In the ®rst case,

P
H sin#H andP

J f 0
J sin#J included in the right-hand side of (11) are

zero, and (11) reduces to

@I�hkl�=@� � 2
h
�@f 0H=@��

�P
H

cos#H

�
A�hkl�

� �@f 00H=@��f 00H

�P
H

cos#H

�2i
: �12�

On the long-wavelength side of the absorption edge, the
product �@f 00H=@��f 00H in (12) is very small and the term
including it can be neglected. Then we have

@I�hkl�=@� � 2�@f 0H=@��
�P

H

cos#H

�
A�hkl�: �12a�

@f 0H=@� can be obtained from the measurements of f 0H or
calculated from numerical tables such as those compiled
by Sasaki (1989). Then, (12a) suggests that if one
measures @I�hkl�=@�, i.e. the intensity gradient with
respect to the wavelength of the hkl re¯ection, it is
possible to obtain A(hkl), provided that the coordinates
of the anomalously scattering atoms are known or
properly assumed. If the atom H is a heavy atom in a
crystal consisting mainly of light atoms and the number
of H atoms in a unit cell is not large, it is not dif®cult to
obtain information on xH, yH and zH using various
techniques employed in crystal structure analysis. When
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only the sign of A(hkl) is required, the situation
becomes particularly simple and knowing only
approximate values of xH, yH and zH suf®ces to deter-
mine the sign as long as

P
H cos#H has the same sign as

that of the corresponding sum for the correct values. The
experimental procedure involved is simply to see
whether the intensity gradient is positive or negative;
there is no need to make quantitative measurements of
the intensity gradient.

In the second case, in which the crystal is noncen-
trosymmetric, the situation is somewhat involved. There
are two ways to extract information on the phase of the
structure factor. One is to measure the intensity gradient
both on the long- and on the short-wavelength side of
the absorption edge. The variation of f 0H with � is nearly
symmetrical with respect to the edge: @f 0H=@� is positive
on the long-wavelength side whereas it is negative on
the other side. If the sum of the intensity gradients
measured on the two sides is taken, the terms including
@f 0H=@� are almost cancelled out and we obtain,
neglecting the terms including @f 00H=@� on the long-
wavelength side,

�@I�hkl�=@��L � �@I�hkl�=@��S
� 2�@f 00H=@��S

h
ÿ
�P

H

sin#H

�
A�hkl�S

�
�P

H

cos#H

�
B�hkl�S

i
: �13�

On the other hand, the difference of the intensity
gradients is expressed as

�@I�hkl�=@��L ÿ �@I�hkl�=@��S
� 2j@f 0H=@�j

n�P
H

cos#H

�
�A�hkl�L � A�hkl�S�

�
�P

H

sin#H

�
�B�hkl�L � B�hkl�S�

o
� 2�@f 00H=@��S

h�P
H

sin#H

�
A�hkl�S

ÿ
�P

H

cos#H

�
B�hkl�S

i
: �14�

In these equations, quantities with the suf®x L and S
represent those evaluated on the long- and short-
wavelength sides, respectively. Setting

�A�hkl�L � A�hkl�S�=2 � A�hkl�

and

�B�hkl�L � B�hkl�S�=2 � B�hkl�

in (14) and replacing A(hkl)S and B(hkl)S in (13) and
(14) by A(hkl) and B(hkl), respectively, we obtain the
approximate relations

�@I�hkl�=@��L � �@I�hkl�=@��S
� 2�@f 00H=@��S

h
ÿ
�P

H

sin#H

�
A�hkl�

�
�P

H

cos#H

�
B�hkl�

i
�15�

and

�@I�hkl�=@��L ÿ �@I�hkl�=@��S
� 2

h
2j@f 0H=@�j

�P
H

cos#H

�
� �@f 00H=@��S

�P
H

sin#H

�i
A�hkl�

� 2
h

2j@f 0H=@�j
�P

H

sin#H

�
ÿ �@f 00H=@��S

�P
H

cos#H

�i
B�hkl�: �16�

Now we have two sets of linear equations with A(hkl)
and B(hkl) as unknowns. The quantities on the left side
are obtained from the measured intensity gradients and,
by solving the simultaneous linear equations, it is
possible to derive A(hkl) and B(hkl), from which the
phase angle �(hkl) of the structure factor is calculated:

��hkl� � tanÿ1�B�hkl�=A�hkl��: �17�

�(hkl) values thus calculated are approximate ones, but
it is possible with approximate phase angles to proceed
to the ®rst stage of crystal structure analysis, as many
experiences show. In practical measurements, the
re¯ection intensity may not be expressed on an abso-
lute scale and A(hkl) and B(hkl) are not in the electron
unit. However, this does not raise problems, since what
is required for the calculation of �(hkl) is the ratio
B(hkl)/A(hkl).

An alternative way of extracting information on the
phase of the structure factor is to measure the intensity
gradient for the Bijvoet pair of re¯ections. The intensity
gradient for the �h �k�l re¯ection is written as

@I� �h �k�l�=@� � 2
h
�@f 0H=@��

�P
H

cos#H

�
� �@f 00H=@��

�P
H

sin#H

�i
A� �h �k�l�

� 2
h
ÿ �@f 0H=@��

�P
H

sin#H

�
� �@f 00H=@��

�P
H

cos#H

�i
B� �h �k�l�: �18�

Since f 00H is small on the long-wavelength side,
A� �h �k�l� ' A�hkl� and B� �h �k�l� ' ÿB�hkl�. Then (18) may
be rewritten as
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@I� �h �k�l�=@� � 2
h
�@f 0H=@��

�P
H

cos#H

�
� �@f 00H=@��

�P
H

sin#H

�i
A�hkl�

� 2
h
�@f 0H=@��

�P
H

sin#H

�
ÿ �@f 00H=@��

�P
H

cos#H

�i
B�hkl�: �18a�

It is possible to derive A(hkl) and B(hkl), by solving the
two linear simultaneous equations (11) and (18a), and
calculate the phase angles, as before. Comparison of
these equations with (15) and (16) suggests that contrast
between the intensity gradients on the long- and short-
wavelength sides is higher than the contrast between the
intensity gradients of the hkl and �h �k�l re¯ections and
therefore the determinancy of A(hkl) and B(hkl) may be
higher in the ®rst way (using the long- and short-wave-
length sides of the absorption edge). However, there is
an advantage in adopting the second way (using the
Bijvoet pair); a discussion is given in x4.3 on the choice
of the route to phase determination.

The equations derived above are those for obtaining
the phase or sign of the structure factor. They suggest
that, if the intensity and its gradient are measured on the
absolute scale, the magnitude of the structure factor can
be calculated from A(hkl) and B(hkl). However, it is
preferable to obtain the magnitude of the structure
factor from separate integrated-intensity measurements
using a conventional X-ray diffraction method, since the
accuracy is higher. WMD provides a method for deter-
mining the phase or sign of the structure factor, which is
attached to |F(hkl)| to perform the Fourier synthesis of
the electron density.

3. How to measure the intensity gradient of Bragg
re¯ections

In this section, we consider how to measure the intensity
gradient with respect to the wavelength for many Bragg
re¯ections.

It is evident that, owing to its wavelength tunability
and high brightness, synchrotron radiation is most
applicable to the WMD method. One method to change
continually the wavelength of the incident radiation is to
rock the monochromator crystal with the position of the
monochromated radiation beam kept unchanged. The
double-crystal monochromators designed and manu-
factured for synchrotron X-ray diffraction experiments
meet this requirement (see e.g. Golovchenko et al., 1981;
Matsushita et al., 1986). On the other hand, a method
has been proposed by which a radiation beam having a
band of wavelengths is produced (Arndt et al., 1982). A
monochromator crystal is bent to re¯ect a diverging
X-ray beam at continuously changing Bragg angle and

the re¯ected beam is focused at or near the sample
position. This method does not require any movement of
the monochromator crystal and provides a radiation
beam suitable for WMD experiments. However, the
divergence of the radiation beam introduces extra
dispersion. In the following, the suggested strategy for
the measurements of the intensity gradient is based on
the former of the aforementioned methods, but it can
easily be extended to include the second method.

In reciprocal space, a continual change in � is repre-
sented by a continual change in the radius of the Ewald
sphere. Let the crystal rotate while � repeats an increase
and decrease in the range ��. There are chances for a
reciprocal-lattice point to intersect the surface of the
sphere, the radius of which is, in general, different for
successive intersections, except for the case in which the
rate of the change in � is synchronous with the angular
velocity of the crystal rotation. If the time of measure-
ment is long enough to allow � to oscillate many times
and the crystal to do a number of rotations, the reci-
procal-lattice point intersects the surface of the sphere
at all radii included in ��, resulting in an `effective
wavelength scan' of the re¯ection intensity. The intensity
gradient with respect to � can be derived from the
intensity pro®le.

During the combined crystal rotation and � oscilla-
tion, many reciprocal-lattice points intersect the Ewald
sphere; we suggest employing an X-ray precession
camera or a Weissenberg camera to record the intensity
gradient for them. A modi®cation, however, has to be
made to the design of the camera so that the position of
the layer screen is varied synchronously with the change
in � for the zero-layer pattern. For the upper-layer
pattern, additional synchronous variation of the ®lm (or
plate) distance is necessary. In the WMD pattern thus
obtained, Bragg re¯ections appear as elongated spots,
somewhat like short Laue streaks. The signi®cant
difference between the elongated spots and the Laue
streaks lies in that the range of � is de®nite in the former
whereas it is inde®nite in the latter. �� is determined by
the wavelength of the radiation to be used and the unit-
cell size of the crystal. When the intensity gradient is
measured both on the long- and on the short-wavelength
side of the absorption edge, �� is set to be larger to
straddle the absorption edge.

Fig. 1 shows an example of a WMD pattern, recorded
using a precession camera. A single crystal of a ferro-
cene derivative (chemical formula C36H32O7Fe) was
used as a sample and �� was set to 1.746±1.824 AÊ (the
K-absorption edge of the iron atom is at 1.743 AÊ ). The
crystal structure was solved by direct methods (Naka-
mura & Setodoi, 1998) in space group P21=a. Table 1
presents a comparison between the signs of the structure
factors derived from the measured intensity gradients
and the signs calculated from the atomic coordinates
determined by the structure analysis. Agreement is
found to be good.
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For WMD, the wavelength of the radiation to be used
is determined by the absorption edge of the atom
contained in the crystal and in some cases it is longer
than that usually used for crystal structure analysis. The
number of re¯ections for which the phase or sign is
assigned is thus smaller than the number of re¯ections
for which the integrated intensity is measured by means
of conventional X-ray diffractometry. However, this is
not a fatal drawback of WMD, since knowledge of the

phase or sign of a limited number of the structure factors
can provide a clue to the solution of the crystal structure.

Note that, when the crystal is centrosymmetric, only
`one measurement' of the intensity gradient suf®ces to
derive the sign of A(hkl) and therefore WMD is free
from the problem of intensity scaling. In the case of
noncentrosymmetric crystals, the same is true, provided
that the Bijvoet pairs of re¯ections are recorded in one
pattern.

4. Discussion

4.1. Other factors in¯uencing the intensity gradient of
re¯ections

The intensity gradient of Bragg re¯ections has its
origin not only in the anomalous scattering of atoms but
also in the wavelength dependence of the intensity of
the primary radiation beam and in the wavelength
dependence of the absorption of the radiation beam by a
sample. The spectrum of the synchrotron radiation
emitted from the bending magnet is known for each
storage ring and can be used for the correction of the
observed intensity gradient. It is possible, however, to
introduce deformation into the shape of the spectrum by
inserting materials in the beam path so that the depen-
dence is very small in the wavelength range under
consideration. The wavelength dependence of the
sample absorption can be calculated, when measure-
ments are made on the long-wavelength side of the edge,
referring to a table such as that compiled by Sasaki
(1990). On the short-wavelength side, the absorption is
appreciably high and, furthermore, an X-ray absorption
®ne structure (XAFS) oscillation may appear. It is
necessary to make, prior to recording WMD patterns,
measurements of the sample absorption to ®nd a
wavelength range for which reliable correction can be
made.

The wavelength dependence of the Lorentz factor
and the polarization factor have to be considered also.

Fig. 1. Wavelength-modulated diffraction pattern of a single crystal of
C36H32O7Fe, recorded using an X-ray precession camera on a
synchrotron-radiation source at Ritsumeikan University. The
continually varied wavelength range was 1.746±1.824 AÊ , the
K-absorption edge of Fe being at 1.743 AÊ . The pattern shows an
array of 0kl-type re¯ections, which appear elongated owing to the
continual change in the wavelength. (The layer screen used here had
an annular aperture of width large enough to allow re¯ections of
varying wavelength to pass; it was not necessary to change
continually the position of the layer screen.)

Table 1. Comparison of the sign of the structure factor of a C36H32O7Fe crystal derived from the observed intensity
gradient using equation (12a) and calculated from the atomic coordinates determined by Nakamura & Setodoi (1998)

hkl
Sign derived using
(12a)

Sign from
atom coordinates hkl

Sign derived
using (12a)

Sign from
atom coordinates

006 ÿ ÿ 027 ÿ ÿ
007 ÿ ÿ 028 ÿ ÿ
008 ÿ ÿ 002014 � �
009 ÿ ÿ 002015 � �
000010 ÿ ÿ 036 � �
000013 � � 003011 ÿ ÿ
000016 � � 003013 ÿ ÿ
001010 ÿ ÿ 042 � �
001011 ÿ � 045 ÿ ÿ
001016 � � 046 ÿ ÿ

047 ÿ ÿ
048 ÿ ÿ
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The former is concerned with the rate at which the
reciprocal-lattice point passes through the surface of the
Ewald sphere. Simple calculation shows that the rate is
proportional to � sin�2��=� (� is the angular velocity of
the crystal rotation and � the Bragg angle) for the
re¯ection for which the axis of rotation is normal to the
plane of scattering. Since � increases with � according to
the Bragg equation, the wavelength dependence of the
rate is not appreciable and may be neglected. It should,
however, be noted that the Lorentz factor shows an
appreciable variation with 2� in the outer rim region of a
precession pattern and has an in¯uence on the intensity
pro®le. The polarization factor depends on � through
the wavelength dependence of the angle of beam
de¯ection and can be calculated. The dependence is not
appreciable.

4.2. Effect of the presence of another anomalously
scattering atom

If there is an atom, say G, whose absorption edge lies
not far from that of the H atom, the contribution of f 0G
and f 00G cannot be neglected. In this case, the equation of
the intensity gradient, corresponding to (11) above, is
written as

@I�hkl�=@�
� 2

h
�@f 0H=@��

�P
H

cos#H

�
ÿ �@f 00H=@��

�P
H

sin#H

�
� �@f 0G=@��

�P
G

cos#G

�
ÿ �@f 00G=@��

�P
G

sin#G

�i
� A�hkl� � 2

h
�@f 0H=@��

�P
H

sin#H

�
� �@f 00H=@��

�P
H

cos#H

�
� �@f 0G=@��

�P
G

sin#G

�
� �@f 00G=@��

�P
G

cos#G

�i
B�hkl�: �19�

This is still in the form of a linear combination of A(hkl)
and B(hkl). Two simultaneous equations can be solved,
if there is additional information on the coordinates of
atom G, to obtain A(hkl) and B(hkl) in a similar way to
that described above.

4.3. Accuracy of the phase or sign determined by the
WMD method

What is measured in the WMD technique is the
intensity gradient of Bragg re¯ections; the procedures
involved are simpler than those of other methods of
phase determination in which integrated intensity is
measured for several wavelengths. The procedures are
particularly simple for centrosymmetric crystals and, as
(12a) suggests, the sign of A(hkl) is determined by
inspecting whether the intensity pro®le of the re¯ections
in a WMD pattern has a positive or a negative slope.
@f 0H=@� is included in (12a) but it is only necessary to

know its sign at � where the gradient is measured. Errors
in the estimation of the wavelength dependence of the
primary-beam intensity and the sample absorption do
not affect the results unless they upset the sign of the
intensity gradient. There may be re¯ections for which
the gradient is very small, even though their |A(hkl)| are
large. For such re¯ections, the accuracy of the sign
determination may be low.

For noncentrosymmetric crystals, not only the signs of
A(hkl) and B(hkl) but also their magnitudes are
required and the accuracy of the phase determination is
not the same as in the case of centrosymmetric crystals.
The accuracy depends primarily on how accurately the
intensity gradient is measured. In the ®rst way described
in x2, in which the measurements are extended to the
short-wavelength side of the absorption edge, estimation
of the correction for the wavelength dependence of the
sample absorption may be the largest source of error. In
the second way (x2), in which the Bijvoet pair of
re¯ections are used, the measurements are made solely
on the long-wavelength side and the estimation can be
made fairly accurately. Care should be taken to ensure
that the geometrical and physical factors affecting the
intensity are the same for each re¯ection of the pair. The
choice of the way to measure the intensity gradient
depends on the chemical contents of the sample and on
the unit-cell size.

Reliability of the @f 0=@� and @f 00=@� values has an
in¯uence on the accuracy of the phase determination for
noncentrosymmetric crystals. The table of Sasaki (1989)
is based on the results of quantum-mechanical calcula-
tions of f 0 and f 00 by Cromer & Liberman (1970), which
are not necessarily accurate enough for the wavelength
very close to the absorption edge. One way to obtain
reliable values is to determine f 00 from absorption
measurements on a sample and to derive f 0 by making
use of the Kramers±Kronig transformation (Hendrick-
son, 1991). It is also necessary to check the actual
location of the absorption edge, since the effect of
chemical shift may be present.

Practical application of WMD is in progress at the
Synchrotron Radiation Center at Ritsumeikan Univer-
sity and a full report of the results will be published in
due course.
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